### **WASTE RESOLUTION TECHNOLGIES**

# MAAHP TISSUE PROCESSORS

тм

Introducing The Next Generation Alkaline Hydrolysis Technology Specifically Designed for Abattoirs

# WHAT IS A TISSUE PROCESSOR?

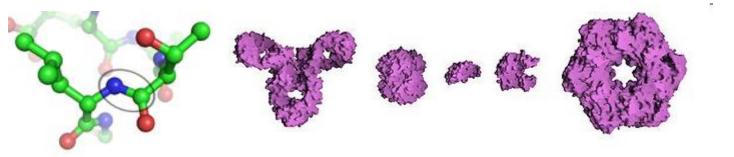
A tissue processor is a highly specialized piece of equipment that breaks down PROTEIN BASED materials through a catalyzed thermo-chemical process, thereby effecting irreversible hydrolysis of the protein back into its original building blocks i.e. small peptides, amino acids sugars and soaps.





### FEEDSTOCK FOR A TISSUE PROCESSOR




#### FAT | OFFAL | HEADS | FEATHERS | INTESTINES | ORGANS

ANYTHING THAT ONCE WAS - OR BELONGED TO - AN ANIMAL CAN BE PROCESSED IN A WRT MAAHP TISSUE PROCESSOR

# MAAHP TISSUE PROCESSORS (cont.)

The MAAHP systems use heat, water and a base catalyst as the three main components to rapidly dissolve tissue.

What begins as tissue ends up as a liquid mixture of amino acids, small peptides, sugars, nutrients, and soap, along with the mineral ash of the bones and teeth (calcium phosphate).



# **MAAHP Process Requirements**



# WHAT ABOUT PATHOGENS?

The protein coats of viruses are destroyed and the peptide bonds of protein based infectious organisms are broken down, thereby destroying the infectious organisms.

The resulting liquids and solids are pathogen free due to process time and temperature, alkalinity, and the complete homogenization of the protein based materials.



BIO-SECURITY IS A GIVEN WITH THIS PROCESS



# **A CAUTIONARY NOTE ABOUT PRIONS**

MAAHP tissue processors have been designed to deal with material and the associated pathogens encountered during the normal day-to-day operation of an abattoir, and have not been field tested using prion infected material.

Whilst there is compelling scientific evidence to suggest that low pressure alkaline hydrolysis is effective in prion destruction (refer Dr. David Taylor et al), we recommend HIGH PRESSURE AH systems for material that is suspected to contain prions.

### An Expert's Opinion – Dr David Taylor

Although earlier work with hot alkali and prions involved hyerbaric vessels, my own later work with the thermostable 301V strain of BSE agent showed that boiling for one minute in alkali at atmospheric pressure completely inactivated this high-titre agent. These data were first presented in 1999 to a meeting of the Association of Veterinary Teachers and Research Workers in Scarborough (UK). Since then, I have presented the same data at around ten international meetings and in a number of publications. To my knowledge, there are no contradictory data, and I have never been challenged publicly or privately regarding the accuracy or validity of my data.

### **NON-PROTEIN BASED MATERIALS**

A MAAHP tissue processor is a very effective means of dealing with proteinacious material, but is not designed to fully digest material derived from plants and is wholly ineffective against inorganic substances such as plastics, synthetic polymers and metals.

Indigestible materials still benefit from the thermochemical treatment in terms of providing pathogen control, and there is no need to separate these materials if they are present in the tissue that is being treated.


# **A VISUAL PROCESS OVERVIEW**

- 1. Load Tissue
- 2. Add Catalyst
- 3. Add Water
- 4. Hydrolyze the Tissue
- 5. Discharge the Tissue Processor
- 6. Recover Tallow / Fats
- 7. Recover or Recycle the Hydrolyzed Protein

### LOAD TISSUE



### ADD CATALYST



### **ADD WATER**

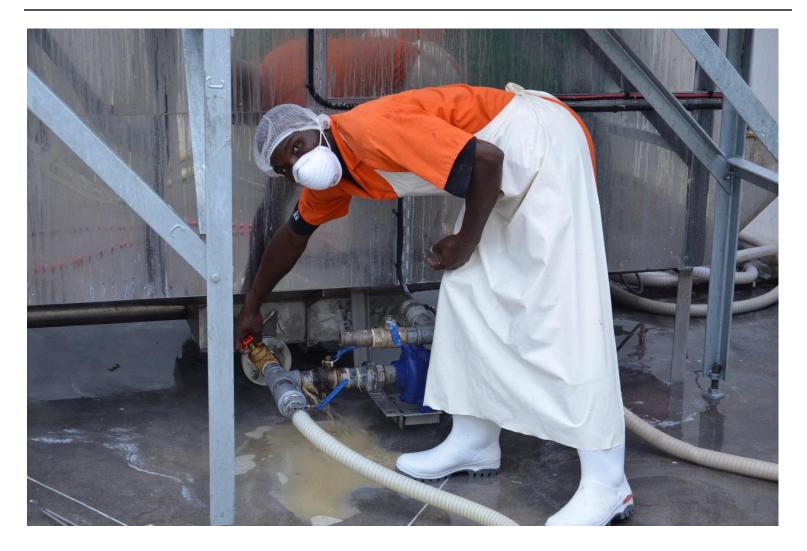


### **CLOSE LIDS AND CLEAN AREA**



### **START PROCESSOR**




# THE HYDROLYIS PROCESS

12 – 24 HOURS NO HUMAN INPUT REQUIRED





# **DISCHARGING THE TISSUE PROCESSOR**



### **STEP 1 - DISCHARGE HPL**



### **STEP 2 – RECOVER FATS**



### **STEP 2 – RECOVER FATS cont...**



### RECOVERED FATS – PREMIUM PRODUCT R 4000 – R5000 PER TON



### WHAT IS LEFT AFTERWARDS



### OPTION 2 - DRIED HYDROLYZED BLOOD R 3500 / ton (Ex Krugersdorp)



### LABORATORY RESULTS

#### **Microbiological Tests**

Test/s required: Total plate count

| Dilution Series | Sample 1 | Sample 2 | <b>Biological</b> Activity                                                                |                                                                                                                                                                                        | Target Values<br>(Fertilizer Industry: QC Standard) |  |  |  |
|-----------------|----------|----------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
|                 |          |          | Total Viable Macro-Organisms<br>(Organisms per litre)                                     | 0                                                                                                                                                                                      | Zero                                                |  |  |  |
| Undiluted       | 0        | 0        | Total Viable Micro-Organisms                                                              |                                                                                                                                                                                        |                                                     |  |  |  |
| 1.00E+03        | 0        | 0        | (Colonies per millilitre)                                                                 | 0                                                                                                                                                                                      | Zero                                                |  |  |  |
| 1.00E+06        | 0        | 0        | Moulds & Yeasts<br>(Positive Negative Test)                                               | Negative                                                                                                                                                                               | Must be negative                                    |  |  |  |
| 1.00E+09        | 0        | 0        | BDL = Below Detection Limit                                                               |                                                                                                                                                                                        |                                                     |  |  |  |
| 1.00E+12        | 0        | 0        | (mg/l) = milligrams per litre = parts per<br>Please Note: This report only relates to the | $(mg/\ell)$ = milligrams per litre = parts per million ( $\mu g/\ell$                                                                                                                  |                                                     |  |  |  |
| Average         | 0        | 0        | accepted, related to the use                                                              | Please Note: This report only relates to the actual sample supplied and analysed. No responsibility can<br>accepted, related to the use of these results and recommendations provided. |                                                     |  |  |  |

#### Comments

No colony forming microbes were detected on total plate count agar. No bacterial or fungal contaminants detected in the samples.

With regards to bacteria and fungal species the samples can be regarded as biologically safe.

### LABORATORY RESULTS (cont.)

| CONSTITUENT                     |          | Alkaline Hydrolysed<br>Material |
|---------------------------------|----------|---------------------------------|
| ρH                              | ρH-units | 11.8                            |
| Nitrogen – Total (as N)         | %        | 14.38                           |
| Bio-available Nitrogen          | %        | 14.22                           |
| Phosphorous – Total (as P)      | %        | 3.29                            |
| Bio-available Phosphorous       | %        | 3.29                            |
| Bio-available Potassium (K)     | %        | 24.1                            |
| Bio-available Calcium (as Ca)   | %        | 1.55                            |
| Bio-available Sulphur (as S)    | %        | 0.26                            |
| Bio-available Magnesium (as Mg) | %        | 2.10                            |
| Bio-available Boron (B)         | (ppm)    | 99                              |
| Bio-available Copper (Cu)       | (ppm)    | 62                              |
| Bio-available Iron (Fe)         | (ppm)    | 1,942                           |
| Bio-available Manganese (Mn)    | (ppm)    | 93                              |
| Bio-available Molybdenum (Mo)   | (ppm)    | 28                              |
| Bio-available Selenium (Se)     | (ppm)    | 7.8                             |
| Bio-available Zinc (Zn)         | (ppm)    | 3,435                           |

1. GENERAL: Deon Viljoen – Alkaline Hydrolysed Material - Sampled 11 June 2010

### LABORATORY RESULTS (cont.)

#### Heavy Metal Analysis of Substrate

| Element         | Sample 1 | Sample 2 |  |
|-----------------|----------|----------|--|
|                 |          |          |  |
| Ag - Silver     | < 0.01   | 0.03     |  |
| Al - Alluminium | 27.93    | 17.42    |  |
| Ba - Barium     | 0.6      | 0.147    |  |
| Be - Beryllium  | 0.019    | 0.049    |  |
| Cd - Cadmium    | 0.03     | 0.032    |  |
| Co - Cobalt     | 0.081    | 0.062    |  |
| Cr - Chromium   | 2.372    | 2.646    |  |
| Li - Lithium    | 0.068    | 0.048    |  |
| Ni - Nickel     | 0.562    | 0.437    |  |
| Pb - Lead       | <0.01    | 0.058    |  |
| Sb - Antimony   | <0.01    | <0.01    |  |
| Se - Selenium   | 0.851    | 1.206    |  |
| Sr - Strontium  | 1.387    | 0.384    |  |
| Tl - Thallium   | <0.01    | <0.01    |  |
| V - Vanadium    | 0.234    | 0.207    |  |

#### **Total Chemical Analysis of Substrate**

| Sample   | Prot (%) | N (%) | P (%) | К (%) | Ca (%) | Mg (%) | s (%) | Na (%) |
|----------|----------|-------|-------|-------|--------|--------|-------|--------|
| Sample 1 | 5.688    | 0.91  | 0.018 | 1.276 | 0.006  | 0.002  | 0.155 | 0.030  |
| Sample 2 | 6.125    | 0.98  | 0.027 | 1.270 | 0.039  | 0.011  | 0.154 | 0.030  |

| Sample   | Cu ppm | Fe ppm | Zn ppm | Mn ppm | Mo ppm | B ppm |
|----------|--------|--------|--------|--------|--------|-------|
| Sample 1 | 0.46   | 13.84  | 7.52   | 0.07   | 0.76   | 1.68  |
| Sample 2 | 1.22   | 25.61  | 7.25   | 2.32   | 0.49   | 2.32  |

### MANAGING THE HYDROLYZED PROTEIN FROM THE TISSUE PROCESSOR

### A Liquid Fertilizer

The hydrolyzed protein is an excellent liquid fertilizer due to the elevated levels of Nitrogen and Potassium. The high pH, if unadjusted, can also reduce the lime requirement but pH can be tailored to suit any type of soil if a lower pH is required. Great additive to manure slurries prior to application!



### MANAGING THE HYDROLYZED PROTEIN FROM THE TISSUE PROCESSOR (cont..)



### HPL – Liquid Fertilizer Trial Results

|                              | WET MASS                    | DRY MASS               |                        |
|------------------------------|-----------------------------|------------------------|------------------------|
|                              | grams                       | grams                  |                        |
| Control                      | 11.4775                     | 1.5                    | Not used in statistics |
| 3:2:1(30)                    | 110.895                     | 20.3925                |                        |
| 3 ton/ha Liquid + 3:2:1(30)  | 147.815                     | <mark>26.0375</mark>   |                        |
| 5 ton/ha Liquid + 3:2:1(30)  | <mark>147.15</mark>         | 26.1025                |                        |
| 10 ton/ha Liquid + 3:2:1(30) | 149.23                      | 25.1375                |                        |
| 20 ton/ha Liquid + 3:2:1(30) | <mark>157.92</mark>         | <mark>27.23</mark>     |                        |
| Sum                          | 713.0025                    | 124.9                  |                        |
| Average                      | 142.6005                    | 24.98                  |                        |
| Standard Deviation           | 18.2454729                  | 2.6697741              |                        |
| 5 ton/ha Liquid pH 6         | 17.34                       | 2.56                   |                        |
| 10 ton/ha Liquid pH 6        | 36.63                       | 6.2625                 |                        |
| 20 ton/ha Liquid pH 6        | 58.08                       | 9.9475                 |                        |
| Significant increase in I    | bio-mass <mark>Signi</mark> | ficant decrease in bio | o-mass                 |

### HPL – Liquid Fertilizer Proven Results

#### **Table 1.Plant analysis**

| Treatment                       | N    | Са   | Mg    | K    | Na   |      |      | Fe   |     | Cu | Zn | Мо | В  | WET                  | DRY                  |
|---------------------------------|------|------|-------|------|------|------|------|------|-----|----|----|----|----|----------------------|----------------------|
|                                 |      |      | Ũ     |      |      | S    | Р    |      | Mn  |    |    |    |    | MASS                 | MASS                 |
|                                 |      |      | mg/kg |      |      |      |      | mg/k | g   |    |    |    |    |                      |                      |
|                                 |      |      |       |      |      |      |      |      |     |    |    |    |    | gram                 | s/pot                |
| Control                         | 0.64 | 0.32 | 0.16  | 2.03 | 0.01 | 0.08 | 0.10 | 126  | 122 | 4  | 37 | 1  | 10 | 11.4775              | 1.5                  |
| 3:2:1(30)                       | 0.74 | 0.26 | 0.20  | 0.65 | 0.01 | 0.13 | 0.14 | 79   | 204 | 3  | 37 | 1  | 7  | <mark>110.895</mark> | <mark>20.3925</mark> |
| 3 ton/ha Liquid<br>+ 3:2:1(30)  | 0.63 | 0.19 | 0.15  | 0.82 | 0.01 | 0.09 | 0.13 | 71   | 106 | 2  | 25 | 2  | 8  | <mark>147.815</mark> | <mark>26.0375</mark> |
| 5 ton/ha Liquid<br>+ 3:2:1(30)  | 0.87 | 0.21 | 0.13  | 1.03 | 0.01 | 0.13 | 0.10 | 79   | 113 | 2  | 28 | 2  | 5  | <mark>147.15</mark>  | <mark>26.1025</mark> |
| 10 ton/ha Liquid<br>+ 3:2:1(30) | 1.07 | 0.19 | 0.12  | 1.31 | 0.01 | 0.11 | 0.10 | 71   | 84  | 3  | 34 | 1  | 5  | <mark>149.23</mark>  | 25.1375              |
| 20 ton/ha Liquid<br>+ 3:2:1(30) | 0.90 | 0.14 | 0.10  | 1.73 | 0.01 | 0.10 | 0.09 | 78   | 87  | 2  | 33 | 1  | 5  | <mark>157.92</mark>  | <mark>27.23</mark>   |
| 5 ton/ha Liquid<br>pH 6         | 0.72 | 0.30 | 0.15  | 2.68 | 0.01 | 0.08 | 0.10 | 95   | 95  | 3  | 32 | 1  | 8  | 17.34                | 2.56                 |
| 10 ton/ha Liquid<br>pH 6        | 0.84 | 0.24 | 0.12  | 2.52 | 0.01 | 0.09 | 0.09 | 116  | 84  | 4  | 35 | 2  | 8  | 36.63                | 6.2625               |
| 20 ton/ha Liquid<br>pH 6        | 0.89 | 0.19 | 0.11  | 2.48 | 0.01 | 0.12 | 0.09 | 96   | 68  | 3  | 32 | 2  | 7  | 58.08                | 9.9475               |

Significant increase in bio-mass Significant decrease in bio-mass

The nitrogen and potassium showed significant increases with higher effluent applications on both the enriched as well as where only pH adjustments were made.

### HPL – Liquid Fertilizer Proven Results

### **CONCLUSIONS AND RECOMMENDATION**

Clearly the enriching of the effluent has a significant positive effect on bio-mass (yield) production.

Without enriching increasing application rates of the effluent significantly increases bio-mass production.

The effluent also contributes to the stabilization of soil pH and has a positive effect in increasing the potassium levels in the soil.

### Dr J A Janse van Vuuren, Prof A S Claassens



### MANAGING THE HYDROLYZED PROTEIN FROM THE TISSUE PROCESSOR (CONT.)

### **Biogas Additive or Biomass Converter**

The hydrolyzed protein from abattoir derived tissue is also an excellent feedstock for an anaerobic digestor or a biomass converter when energy recovery is the objective. This is due to the higher fat content when compared to other protein based sources without having to worry about BIOSECURITY





### MANAGING THE HYDROLYZED PROTEIN FROM THE TISSUE PROCESSOR (CONT.)

### **Compost Additive**

The hydrolyzed protein is an excellent compost additive and allows for easy and **homogenous** mixing into any basal ingredient or can be incorporated into abattoir waste streams such as paunch material without the usual concerns about pathogens and bio-security.



### **POTENTIAL COST RECOVERY MODEL BOVINE ABATTOIR – EX KRUGERSDORP.**

| BLOOD                      |               | R/KG | BLOOD                          |               | 1000KG |
|----------------------------|---------------|------|--------------------------------|---------------|--------|
| COST/KG PRODUCT PROCESSED  | $\rightarrow$ | 0.51 | BATCH PROCESSING COST          | $\rightarrow$ | 506.75 |
| POTENTIAL COST RECOVERY/KG | $\rightarrow$ | 0.88 | POTENTIAL COST RECOVERY        | $\rightarrow$ | 875.00 |
| ADJUSTED COST/KG PROCESSED | $\rightarrow$ | 0.37 | ADJUSTED BATCH PROCESSING COST | $\rightarrow$ | 368.25 |
|                            |               | 0.57 |                                |               | 500.25 |

| TISSUE & BLOOD             |               | R/KG | TISSUE & BLOOD                 |               | 2000KG   |
|----------------------------|---------------|------|--------------------------------|---------------|----------|
| COST/KG PRODUCT PROCESSED  | $\rightarrow$ | 0.67 | BATCH PROCESSING COST          | $\rightarrow$ | 1 347.50 |
| POTENTIAL COST RECOVERY/KG | $\rightarrow$ | 0.85 | POTENTIAL COST RECOVERY        | $\rightarrow$ | 1700.00  |
| ADJUSTED COST/KG PROCESSED | $\rightarrow$ | 0.18 | ADJUSTED BATCH PROCESSING COST | $\rightarrow$ | 352.50   |

1000KG 986.25

1500.00

513.75

|                            | _             |      |                                | -             |
|----------------------------|---------------|------|--------------------------------|---------------|
| TISSUE ONLY                |               | R/KG | TISSUE ONLY                    |               |
| COST/KG PRODUCT PROCESSED  | $\rightarrow$ | 0.99 | BATCH PROCESSING COST          | $\rightarrow$ |
| POTENTIAL COST RECOVERY/KG | $\rightarrow$ | 1.50 | POTENTIAL COST RECOVERY        | $\rightarrow$ |
| ADJUSTED COST/KG PROCESSED | $\rightarrow$ | 0.51 | ADJUSTED BATCH PROCESSING COST | $\rightarrow$ |

# CONCLUSIONS

### Benefits of the MAAHP Tissue Processing System

- ✓ Fast , Consistent, Energy Efficient, Low odor process.
- ✓ Low Labor & Management Requirements
- ✓ Complete System, small footprint, robust design
- ✓ Offers excellent bio-security.
- ✓ Allows on-site treatment of a wide variety of tissue without the need to sort.
- ✓ Prevents re-entry of treated material into the food chain.
- $\checkmark$  Provides true denaturing as required by law
- ✓ Provides Cost Recovery Options

# **Contact Waste Resolution Technologies**

### MARK TECKLENBURG

**Managing Director** 

CELL: 083 375 8326

FAX: 0866 9588 53

EMAIL: mark@waste-resolution-technologies.com

### **PIET KRUGER**

**Technical Director** 

CELL: 082 8414 996

FAX: 0866 9588 53

EMAIL: piet@waste-resolution-technologies.com

WEB : waste-resolution-technologies.com