Effect of electrical stimulation, age of the animal and extreme ageing on tenderness and water hoding capacity of beef loin muscles

ARC • LNR **Excellence in Research and Development**

Michelle Hope-Jones¹, Phillip E. Strydom¹ & Ennet Moholisa²

Animal Nutrition and Animal Products Institute: Agricultural Research Council of South Africa, Private Bag X2, Irene, 0062, South Africa.

² Microbial, Biochemical and Food Technology, Free State University, PO Box 339, Bloemfontein, 9300, South Africa

INTRODUCTION

Table 1: Effect of electrical stimulation, age/ diet and post mortem ageing on tenderness (WBSF) and overall tenderness (sensory).

- Animal age is one of many factors affecting meat quality in general, but tenderness in particular.
- Namibia exports vacuum-packed hind quarter cuts as Super (age groups with permanent incisors from 0-6) and Prime (age groups with permanent incisors >7) product lines.
- Two ageing regimes apply, at least14 days to South Africa and up to 3 months to Europe.
- Under this scenario:
- What is the risk mixing of age groups within 1 quality grade?
- Will electrical stimulation benefit cuts from older animals and/or the extended ageing regime?

OBJECTIVE

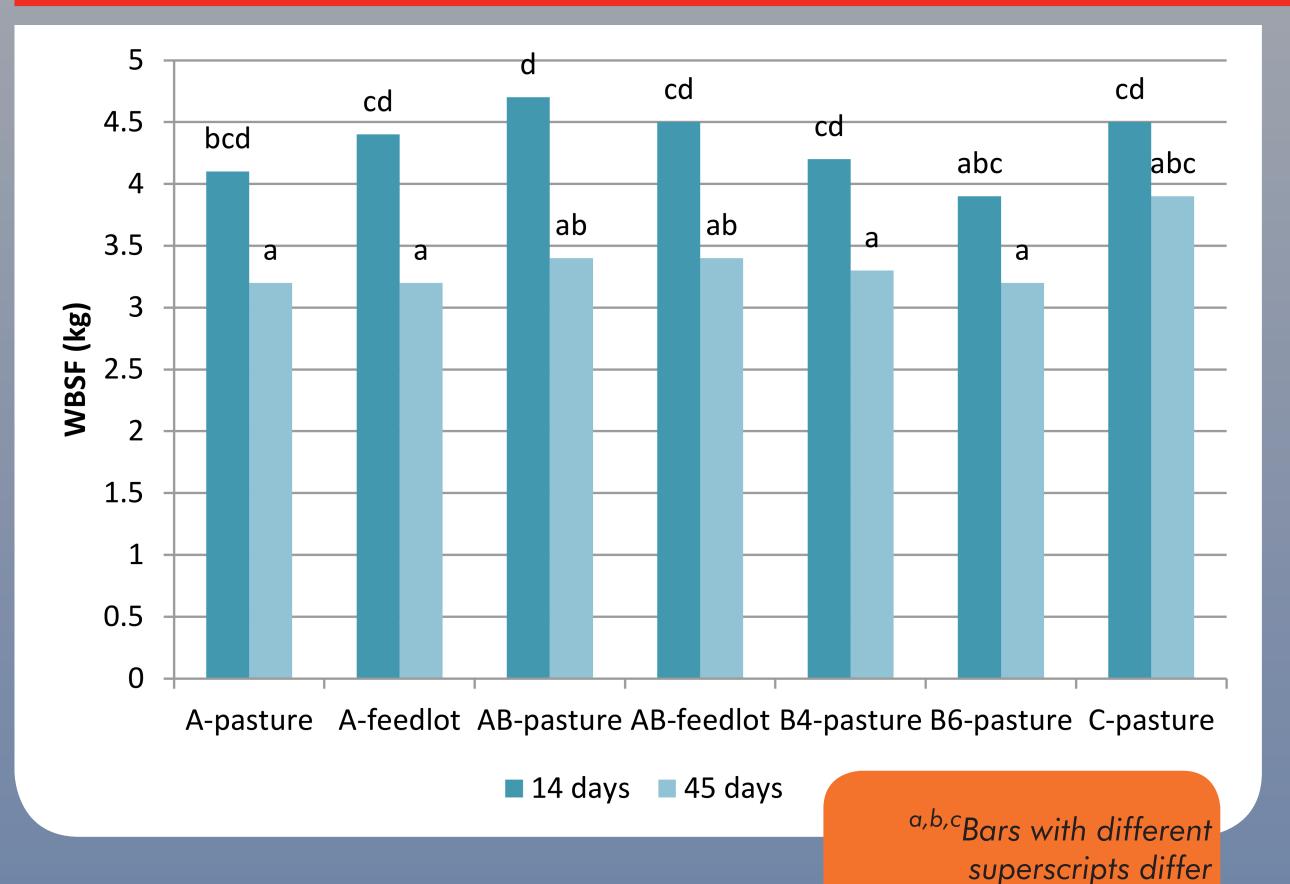
To determine the risk of variation in animal age on tenderness of beef loins exposed to extreme post mortem aging and electrical stimulation.

	WBSF (kg)	Sensory
Elec. stimulation:		
NES	4.0	5.4°
ES	3.7	5.7 ^b
SEM	0.1210	0.1123
Age/diet:		
A-pasture	3.6	5.9 ^{bc}
A-feedlot	3.8	6.1 ^c
AB-pasture	4.0	5.6 ^{bc} 6.0 ^{bc}
AB-feedlot	4.0	6.0 ^{bc}
B4-pasture	3.7	5.5 ^b
B6-pasture	3.6	5.7 ^{bc}
C-pasture	4.2	4.5°
SEM	0.2264	0.2100
Ageing:		
14 days	4.3 ^b	5.5°
45 days	3.4 °	5.7 ^b
SEM	0.0490	0.0562

^{a,b,c}Means in the same column and treatment category

significantly (P<0.05)

METHODS


- Seven age groups (based on permanent incisors, p.i.)/diet were used:
 - Pasture finished A (0 p.i.), AB (1 2 p.i.), B (4 p.i.), B (6 p.i.), C (8 p.i.).
 - Feedlot finished A (0 p.i.) and AB (1 2 p.i.).
- Six carcasses per age group electrically stimulated for 45 seconds (ES) (150V, 17Hz, 5ms pulse width) and 6 not (NES).
- M. longissimus lumborum (LL) samples vacuum-packed and aged for 14 days or 45 days.
- Warner Bratzler shear force (WBSF) and sensory analysis by a trained panel.

RESULTS

• Effect of age/diet scenario (Table 1):

• C-age loins scored lower than all the other age groups P < 0.001).

Figure 1. The interaction between age/diet and ageing for WBSF.

- WBSF showed the same trend (P = 0.061).
- Effect of electrical stimulation (Table 1):
- Scored higher for sensory tenderness (P < 0.001) irrespective of age/ diet or duration of post mortem aging.
- Effect of ageing (Table 1):
 - Improved both sensory tenderness and WBSF (P < 0.001).
- Interaction between aging and age/diet (Figure 1; P = 0.084):
 - AB-pasture carcasses responded to aging the best of all the groups (1.3kg improvement).
 - C-pasture group only improved by 0.6 kg after a further 30 days ageing.

CONCLUSION

- The risk of grouping cuts of animals with 6 p.i. or less into 1 product category seems to be low based on shear force and sensory tenderness measurements of the loin muscle.
- Results should not be extrapolated to all cuts of the hind quarter (silverside, topside, thick flank) due to variation in connective tissue content and structure.
- Extended ageing beyond 14 days and electrical stimulation should further reduce the risk of experiencing a tough steak.