

Large volumes of by-product is produced during the slaughter process. This creating a management, business threat & cost problem (new legislation)

RED Waste

ter

Pr Every cow slaughtered produce:

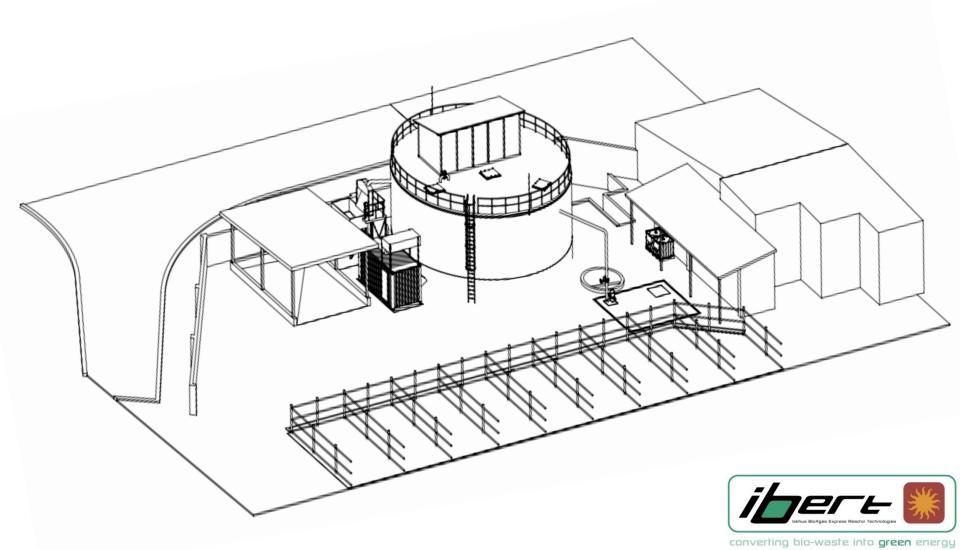
produce 36kg = 81.6kWh potential energy

meat products • 31 kWh electricity

• 40.8 kWh thermal (heat)

Sheep 24,6 = 19 kWh

- 7 kWh e
- 9 kWh t


The patented **Thermo-Gas-Lift (TGL)** and duel chamber fermentor represents the core of the **Bio4Gas**-technology. It is a universal element for:

- 1. Biological heating
- 2. Mixing (driven by gas pressure and temperature differential) without moving parts;
- 3. Desulphurization through sulphur oxidation

Results in:

- 1. More stable and high quality & quantity gas production (+20% more than conventional AD)
- 2. Allow for cocktail of bio-waste
- 3. Small foot print, on site construction
- 4. Lower CAPEX requirement
- 5. Long life span & reduced operating cost no moving parts

Meat-2-Market: BERT500/100 3D Lay-out

Parameters	Bio4Gas / pert	Conventional AD
Substrates = FEEDSTOCK	Using existing biomass e.g. manure on site	Requires special y produced energy crops
Fermenter technology	Appling physics, for mixing & Expensive and high maintent heating requirement up to 15% mixers & heaters higher gas production	
Internal process energy consumption	3 – 4% (all electrical equipment) Up to 30% of produced energy	
Operating cost and maintenance	No moving parts, 3% of capital cost for maintenance p.a.	Frequent stops of production for maintenance, 15% maintenance cost p.a.
Construction & buildings	Single fermenter and integrated gas scrubber	Large multiple fermenter and separate gas scrubber
Feed-in-technology	Pumping	Screws and pumps
Concept	Build in existing infrastructure	Green field site
Heat use	Locally used and can be converted to cold/air/water	To much to use locally, mostly unused/ wasted

iBert waste to energy project steps Step 1 Energy audit Q & Q energy requirement

2 pro foscibility

negotiation

Contract closure

Construction,

operation

commissioning &

Step 4

Step 5

	& pre-leasibility	Energy availibility Pre-feasibility Offer
Step 2	Go no go	
Step 3	Contract	Conclude & sign MOU

Detailed planning and design

Application for funding (IDC)

Confirmation of financing

Plant maintenance CHP

Signature of power supply contract

Signature of construction contract

Signature of operations and maintenance agreement.

Construction of bio-waste treatment facility (end May 12)

Installation of power generation plant (1st week June 12)

Completion and testing of installation (1st week July 12)

Production of electricity & heart (mid July12)

Paca line calculation

Sales agreement

Application EIA

converting bio-waste into green energy

we run on RED meat! Visit our stall